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Notes on ME525 Applied Acoustics Lecture 7, Winter 2022

Complex Intensity, Active and Reactive Intensity

Peter H. Dahl, University of Washington

1) The Laplacian

The Laplacian

The following is review, but it’s worth having another look at the wave equation in spherical
coordinates (Fig. 1). We write the wave equation (here for pressure p) without regard to coordinate
system as

∇2p− 1

c2
ptt = 0 (1)

Figure 1: A spherical coordinate system centered on a sphere of arbitrary radius. Conversion to rectangular
coordinates gives x = r sinα cosφ , y = r sinα sinφ, and z = r cosα.

And if a spherical coordinate system is being used, the big work involves the Laplacian operator
in spherical coordinates (r, φ, α) which is
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that operates on pressure, p. If we hypothesize that there is no variation in α or φ directions, or
spherical symmetry, only the first term is relevant.
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However its important to have a firm understanding that the wave equation can be expressed
in different coordinate systems and the key feature of any coordinate system is the Laplacian differ-
ential operator ∇2 and whether or not simplifications such as spherical symmetry can be applied.
As a reminder, the Laplacian in rectangular coordinates is∇2 = ∂2

x2
+ ∂2

y2
+ ∂2

z2
. The Laplacian in these

spherical, rectangular and cylindrical coordinate system is summarized in a memo on the course
web site’s resource page.

Complex Intensity, Active and Reactive Intensity

Let’s get back red and blue ”envelope” curves that I sketched for the Jacobsen data in Lecture 6
and shown here in Fig. 1. Recall that the Jacobsen data for at kr << 1 represents reactive intensity,
and at kr >> 1 the situation is characterized by active intensity. These curves emerge through the
concept or complex intensity ~Ic = 1

2
p~u? which was first formulated by Heyser (1986), and is discussed

further in Fahy (1995) and Jacobsen and Juhl (2015).
This is best first demonstrated by a model. For example, use our standard model the pressure

from a spherical wave p(r, t) = A
r
eikr−iωt, and form p~u?, using in this case only a radial component

ur for ~u. This yields

Ic =
|A|2

2ρ0c
(
1

r2
− i 1

r2kr
). (3)

where in this case, Ic has only one component in the radial direction as in ur.
The real and imaginary parts of Ic identify active intensity as I = Re{Ic}, and the reactive intensity

as Q = Im{Ic} (and in general case these are vectors ~I and ~Q). Thus according to this model active
intensity is

I =
|A|2

2ρ0cr2
(4)

Notice: in this model active intensity is no longer time-varying but does maintain an r− depen-
dence, consistent with spherical spreading. The corresponding Umov vector for this same model
for pressure (see Lecture 6)=

Sr(r, t) =
|A|2

r2ρ0c
{cos2(kr − ωt+ φA)−

cos(kr − ωt+ φA) sin(kr − ωt+ φA)

kr
} (5)

Observe: the time average of Sr(r, t) identified formally as 〈Sr(r, t)〉 also yields the result for I in
Eq.(4). Thus, henceforth associate active intensity ~I as a time average, in some reasonable sense, of
the Umov vector.

With this particular model the result 〈Sr(r, t)〉 definitely no longer has time variation, only the
spatial variation by way of range r. With real data there can be slowly-varying changes, for exam-
ple, going back to the Jacobsen data, Fig. 2 of Lecture 6 for case kr >> 1, observe the red line (a
rough sketch we added to the data) is describing in some sense a kind of ”running average” of the
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Umov vector. (In hindsight the sketch is not so great. It really should be a bit lower.)
The imaginary part, reactive intensity, is more subtle. You get introduced to it in this class (most

classes in acoustics you would not), maybe we look at a bit, but then we got to move on (those who
do research with get to know it much better!) Evidently for this model Q equals − |A|2

2ρ0cr2kr
, which

also no longer has time variation. Note this subtle point: the sign of reactive intensity is not of
physical significance, and depends on which convention e±iωt is used.

How does this running average idea work with Q? Interpret reactive intensity as a running
average of the envelope of reactive intensity (to the extent it exists). For example, take Fig. 1 of
Lecture 6 for case kr << 1 and observe the blue line (again our sketch) tracing the envelope of the
Umov vector, which is seen upon inspection to have a near-zero time average.

Figure 2: Acoustic pressure (top) acoustic velocity (middle) and intensity measures (bottom) based on mea-
surements at 160 Hz, at two ranges completed at the Army Research Laboratory anachoic chamber, Dall’Osto
and Dahl

A better demonstration (without sketches) is one based on our own measurements at the Army
Research Laboratory’s anachoic chamber made by my colleague Dr. David Dall’Osto, and me.
Besides testing the instrument we were developing at the time, another strong motivation was for
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us was to attempt to duplicate the Jacobsen data. Shown are results from two ranges, 0.28 m and
2.28 m, from a speaker source transmitting at frequency 160 Hz, with a typical conditions for air of
c = 343 m/s and ρ0 = 1.2 kg/m3.

At range 0.28 m, kr ∼ 0.8, or not quite kr << 1, but clearly not kr >> 1. We anticipate a
mixture of active and reactive intensity. This is suggested by inspecting the pressure and velocity
time series, for which you can see a small shift in phase between pressure and velocity–or they don’t
quite line up. Taking a pure average 〈Sr(r, t)〉 over this 0.1 s time period, yields one value = 1.96
10−4 W/m2, and the active intensity I (red line) approximately captures this number, though varies
somewhat at the start. The reactive intensity Q (blue line) is mixed in with the active component
and evidently higher strength or value. At range 2.28 m kr ∼ 6, notice that oscillations in pressure
and velocity align much, though not perfectly, and we can anticipate the observation that Q will
have diminished considerably relative to I .

How do we find the complex intensity, real (red line) and imaginary (blue line) parts when
working with this type of real-valued measurement data? In matlab a simple solution is to form
the Hilbert transform pair of the data using, v_complex = hilbert(v); where v is the matlab
variable representing a time series of velocity, and v_complex is the Hilbert transformed pair
result. Recover a conjugate form of the velocity in matlab using conj(v_complex), or recover
the original real-valued time series using real(v_complex). This is for your background only.
We use the Hilbert transform extensively in our research, but it will not be needed for homework
assignments.

That said, let’s press on with one more demonstration of this interesting data at the kr ∼ 0.8

range, to further understand what is meant by active and reactive intensity. Let us split apart the
acoustic velocity into two parts: vp which represent a velocity that is exactly in-phase with pressure
p, and vq which represent a velocity that is exactly 90◦ out of phase with pressure.

vp =
〈pv〉p
〈p2〉

(6)

where p and v are the pressure and velocity shown in Fig. 2 for the case kr ∼ 0.8, and 〈〉 represents
a time average of the 0.1 s duration shown in the figure. Then find vq = v − vp. (This amazingly
simple algorithm is discussed in Stanzial et al. 2012.)

Notice that 〈pv〉 is the same as the time-average of the Umov vector since p and v are real-
measured quantities. Let see how active and reactive intensity play out when using vp and vq

instead of the total velocity v. Pay attention first to the left column of Fig. 3: upper is plot of
p and v and they are not quite aligned in phase, which we already know given the presence of
reactive intensity in Fig. 2; middle compares p and vp, which are now perfectly aligned, and bottom
compares p and vq which are not exactly 90◦ out of phase.

The right column of Fig. 3 shows the corresponding Umov vectors: upper is pv (same as in
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Fig. 2), middle is pvp and lower is pvq. The red and blue lines are active and reactive intensities,
respectively. In this analysis we are able to parse them out more clearly. For example, the red active
intensity line for case pvp is precisely the same as that using the total velocity pv, but using pvp it is
more easy to see how the red line cuts through an average value of the instantaneous intensity. For
case pvp there is also a complete absence of reactive intensity.

Likewise, the blue reactive intensity line for case pvq is precisely the same as that using the
total velocity pv, but with pvq it is more easy to see how the blue line describes an envelope of the
instantaneous intensity which will otherwise have a time average equal to 0. For case pvq there is
also a complete absence of active intensity.

Figure 3: Further analysis of the data at kr ∼ 0.8 based on splitting the total velocity v into in-phase com-
ponent vp and out-of-phase component vq. Left column: comparison of pressure and velocity components.
Right column: corresponding Umov vector and active (red) and reactive (blue) intensities. See text for addi-
tional discussion.

The take-home message:

• When acoustic pressure and velocity are 90◦ out of phase, as in the Jacobsen data for kr << 1

there exists reactive intensity, 〈Sr(r, t)〉 ∼ 0, and reactive intensityQwill describe the envelope
of Sr(r, t)
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• When acoustic pressure and velocity in phase, as in the Jacobsen data for kr >> 1 there exists
active intensity I , 〈Sr(r, t)〉 is non-zero,

the above given in term of a single radial component, but in general there is ~S, ~I and ~Q.
We have now encountered multiple definitions relating to word intensity, all of which should

have as their basic dimension Watts/m2, or J/sec/m2. Intensity is in general a vector quantity for
which the following forms have been introduced

• Umov vector ~S
~S(r, t) = Re{p(r, t)}Re{~u(r, t)} (7)

• Complex intensity ~Ic
~Ic =

1

2
p(r, t)~u?(r, t) (8)

• active intensity ~I = Re{~Ic} and reactive intensity ~Q = Im{~Ic}

• plane wave intensity p2rms

ρ0c
This is sometimes referred to as plane wave intensity as it is precisely

the intensity one finds from a plane wave. The expression is handy to use with real data–but
be careful with it usage (let’s examine in a small homework problem)
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ME525 Applied Acoustics Lecture 8, Winter 2022
Radiated acoustic power from spherical source,
the ka << 1 limit, point source and Green’s function

Peter H. Dahl, University of Washington

1) Quick note on plane wave intensity
Using p(r, t) = A

r
eikr−iωt for the complex representation of a spherically symmetric pressure

wave, we find by inspection the RMS pressure

prms =
1√
2

|A|
r

(1)

and thus conclude that a time-average of the Umov vector 〈S〉 for this case (e.g. discussed in Eq.
(5) of Lecture 7 or Eq.(7) Lecture 6)

〈S〉 =
p2rms
ρ0c

(2)

This is a measure commonly estimated with real data, and it applies generally to harmonic waves
(e.g., a single frequency), but also is sometime applied transient sounds as in explosive waveform
(multiple frequency content), and ambient noise. The intensity metric p2rms

ρ0c
is referred to as plane

wave intensity because it is formally the intensity from a plane wave. One must apply some caution
because measuring the pressure and forming p2rms and dividing by ρ0c does not generally create the
vector quantity required, for example, which can be used to find total radiated acoustic power, Π

from an acoustic source.
To obtain this, the average rate at which energy flows through a closed spherical surface of

radius r that surrounds the source, a control surface Sc, is computed as follows

Π =

∫
Sc

〈S〉 · d~s (3)

So in general the dot product of the component of 〈S〉 normal to the differential area d~s is com-
puted and summed or integrated over the surface Sc. However let’s say we go back to the spher-
ically symmetric pressure field (pretty good model in many cases) the integral is then done by
inspection, yielding

Π = 2π
|A|2

ρ0c
(4)

We see that the average rate of energy flow through any control surface surrounding the source, or
the acoustic power Π, is independent of the radius of that control surface, which is consistent with
conservation of energy in a lossless medium. In practice, sound absorption can reduce the total Π
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(Kinsler, et al. 1982.) Apply the result found earlier for a spherical source of radius a, wavenumber
k, ρ0c and radial velocity amplitude u0 at the surface of the sphere, where the complex amplitude
A is derived (see Eq.(12) of Lecture 4, and Eq.(7) below), and find

Π = 2πa2|u0|2ρ0c
(ka)2

1 + (ka)2
(5)

It should be more obvious now that effective radiation of acoustic power for a small source as
characterized by ka << 1 is more difficult (think of combination of small earpod and low frequency
versus high frequency sounds) as the small ka limit shows that Π ∼ (ka)2.

The spherically symmetric source in ka << 1 limit, and the monopole source

Continuing with this spherical wave of the form

p(r, t) =
A

r
eikre−iωt (6)

with boundary condition ur(r = a) = u0e
−iωt, the constant A is given by

A = ρ0c u0a(
ka

ka+ i
)e−ika. (7)

Study the factor in parenthesis in the limit of ka << 1, findA ≈ −kρ0cu0a2, based on ka
ka+i

= −ika
plus order (ka)2. With minor rearrangement the pressure can now be expressed as

p(r, t) = −iω(ρ0u04πa
2)
eikr

4πr
e−iωt (8)

Note the −iω (time derivative) and the ρ0u04πa2 (a mass) corresponding to a mass flow of (dimen-
sion M/T). Thus the strength of this acoustic source is defined by the time derivative of mass flow,
or described another way, it is the rate of change of mass flow introduced per unit volume.

Next bundle everything by putting q = −iω(ρ0u04πa
2) which we shall call an effective source

strength. Thus
p(r, t) =

q

4πr
eikr−iωt (9)

where the source is at the center of the coordinate system and pressure is function only of radial
coordinate r.

A further idealization is made as follows: consider the hypothetical case of a becoming progres-
sively smaller while u0 becomes larger such that q remains constant. This is the concept of a point
source or acoustic monopole (Pierce, 1989), for which the source is idealized to originate from a single
point. The idealization is required to confine the source within an infinitely small space, or single
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point, however in practice any small source with time-varying mass of fluid in any small volume
enclosing the source has all the attributes of a point source (Pierce, 1989).

The Green’s function

We further generalize things to find the pressure at a field point ~r, given a source at an arbitrary
source point ~r0 that need not be at origin (Fig. 1) as follows:

p(r, t) =
q

4π|~r − ~r0|
eik|~r−~r0|−iωt (10)

Figure 1: An acoustic source at the source point ~r0 producing the acoustic field at field point ~r.

Equation (10) satisfies the inhomogeneous Helmholtz equation, for which the delta function on
the RHS represents a point source of strength q at position ~r0 such that

(∇2 + k2)p = −qδ(~r − ~r0) (11)
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Here are the key properties of the delta function δ(~r − ~r0):
(1) δ(~r − ~r0) = 0 for ~r 6= ~r0

(2)
∫
V
δ(~r − ~r0)dV = 1

(3)
∫
V
f(~r)δ(~r − ~r0)dV = f(~r0) which is known as the ”sifting property” of the delta function. See

also Fahy (2001).
We further compress notation by defining R = |~r − ~r0|, such that

g =
eikR

4πR
(12)

and call g the free space Green’s function (Pierce 1989, Morse and Ingard, 1968) because g satisifies

(∇2 + k2)g = −δ(~r − ~r0) (13)

in an unbounded medium.
By unbounded medium we mean there are no nearby boundaries to reflect sound, and therefore

the sound spreads uniformly away from the source while decaying in amplitude as ∼ 1/R, where
R is range from source.

A purely unbounded medium might be represented by two people having a conversation–
each in their separate helium balloons far above land. But approximately unbounded media are
everywhere. An excellent one you might experience this winter is being on snow and listening
to sounds or speaking with someone nearby– the air above is unbounded and the snow below is
highly absorptive of sound, hence sound reflection from the snow boundary is very weak. The
opposite effect is experienced by having a conversation inside a stairwell where there are multiple
echoes from the nearby reflective walls.

Note the physical dimension of g is 1/L. As currently constructed, g embodies all the range-
dependent and phase properties of a sound field with point source located at ~r0, but to bring a
more useful dimension of pressure, g must be multiplied by some calibration constant.

To summarize, the function g given here represents a sound source (to within a calibration
constant) that is concentrated at a point in the manner of a delta function in space, and g is as a
solution is known as the Green’s function for the problem at hand (Frisk, 1994). A formal proof
of this solution is given at the end of these notes. This solution can either be a harmonic or an
impulsive Green’s function, depending on the time function characteristic of the source, e±iωt or δ(t).
A Green’s function concentrated in space and impulsive time is discussed in Pierce (1989), see also
Tolstoy (1973). In this course we use primarily harmonic Green’s function solutions, representing a
single-frequency, or narrow band condition, and by Fourier superposition we can combine multiple
frequencies to obtain a pulse of time duration τ and bandwidth ∼ 1/τ .

Finally, notice that since |~r − ~r0| = |~r0 − ~r| then one can exchange the field point and the source
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point with the result unchanged. This important property is call reciprocity, and the reciprocity
principal is often exploited for calibrating microphones and hydrophones (Kinsler et al., 1982). Fur-
thermore, we no longer need to stick with spherically symmetric coordinates. For example, ~r and
~r0 are easily identified in Cartesian coordinates, as in ~r = [x, y, z] and ~r0 = [x0, y0, z0].

We’ll have opportunity to discusse the effect of boundaries, or boundary conditions, in later
lectures. For example a major boundary condition to address with a sound source underwater is
presence of sea surface and seabed boundary.

Acoustically compact source

Following the exercise concerning the ka << 1 we arrive an extraordinarily useful rule: if the
characteristic scale L of source is such that L << λ where λ is the acoustic wavelength, then the
source is acoustically compact. Once the source is deemed acoustically compact the scale L is no
longer relevant.

The source can be modeling as Eq. (9) or (10 where the source strength, q is determined empiri-
cally by measurement. For example, if prms is measured at range R m from the source, then we can
estimate |q| as follows

|q|
4π

1√
2

1

R
= prms (14)

giving at least a value for |q|. Often that is all we need anyway, as the real physics relating to sound
propagation is embodied in Green’s function g.

Lecture 8 Appendix: Formal proof of the Green’s function g being a solution to the Helmholtz
equation for a point source of sound

Let us next prove that g satisfies Eq.(13). First put the point source location ~r0 at the center of a
coordinate system with no loss of generality. Then examine g = eikr

4πr
as a solution to

∇2g + k2g = −δ(r) (15)

where r is now an ordinary radial coordinate from the origin and there is no need to vectorize.
Now consider a volume V that does not include the origin; under these circumstances we have

∇2g + k2g = 0 in view of the properties of the delta function given in these notes. The fact that g,
a spherically symmetric wave so defined, is a solution to this homogeneous Helmholtz equation is
already a settled issue. For example one can put G = rg and G will be a plane wave solution as
demonstrated previously.

Next we show that

∇2 e
ikr

r
+ k2

eikr

r
= −4πδ(r) (16)
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over a small volume V that now encloses the source at the origin. We set this up as follows:∫
V

∇2 e
ikr

r
dV + k2

∫
V

eikr

r
dV = −4π (17)

where the −4π again emerges from the basic property of the delta function.
We examine the two volume integrals separately, put the first equal to I1 and the second equal

to I2. For I1 use the divergence theorem to convert the I1 volume integral into a surface integral
giving

I1 =

∫
Aε

~n · ∇e
ikr

r
dA (18)

where Aε is area of a ”very small” sphere that encloses the source point. Carefully lay out this
surface integral as

I1 =

∫ 2π

0

dφ

∫ π

0

[
d

dr

eikr

r
]ε2 sin θdθ (19)

the factor [ d
dr
eikr

r
] is evaluated at r = ε, and observe that this will be ikε−1

ε2
. Thus in the limit of ε→ 0

we find I1 = −4π.
For I2, recognize that dV equals dφε2 sin θdθ and thus this integral will equal 0 as ε → 0. There-

fore, Eq. (17) is satisfied.
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